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ABSTRACT
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once

per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been

less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein–protein and protein–DNA interactions,

occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site.

A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the

cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to

understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant

origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple

genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about

metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore,

progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development

and progression are discussed. J. Cell. Biochem. 106: 512–520, 2009. � 2009 Wiley-Liss, Inc.
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M etazoan DNA replication is a tightly regulated process,

ensuring that the genome is duplicated only once before

chromosome segregation and cytokinesis. There are approximately

104–106 replication origins each spaced apart at approximately 50–

250 kb, depending on the stage of development, growth conditions,

or cell transformation status [Edenberg and Huberman, 1975; Hand,

1978; Martin, 1981; Anglana et al., 2003], that are coordinately

activated along the chromosomes to ensure that the entire genome is

replicated only once per cell cycle [Blow and Dutta, 2005; Machida

et al., 2005]. The initiation of eukaryotic DNA replication is divided

into two stages: origin selection and origin activation. Origin

selection is mediated by the assembly of the pre-RC [Mendez and

Stillman, 2003], which initiates with the binding of the origin

recognition complex (ORC) [Chesnokov, 2007; Sasaki and Gilbert,

2007] onto origin DNA. During G1, the ORC recruits other members

of the pre-RC, including the proteins Cdc6 and Cdt1 and the putative

DNA helicase, the minichromosome maintenance complex (MCM2-

7). Once the origins are thus selected, they are licensed by the action

of cyclin-dependent kinases (Cdks) and the Dbf4-dependent kinase,
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ushering the cells into S-phase [Sclafani and Holzen, 2007].

Together these kinases trigger the recruitment of replication proteins

necessary for origin unwinding and DNA synthesis. This review

examines the methods employed for the identification and isolation

of eukaryotic origins, the features of these origins, as well as some of

the known origin binding proteins.

ISOLATION METHODS OF EUKARYOTIC
REPLICATION ORIGINS

Several experimental approaches have been employed over the

years for the visualization and isolation of eukaryotic replication

origins [reviewed in Vassilev and DePamphilis, 1992]. These

include: (a) methods based on analyses of nascent strands, such

as DNA fiber autoradiography, earliest labeled DNA fragment,

replication origin trapping, nascent strand extrusion, nascent

strand length, and replication fork polarity; (b) methods based on

analyses of DNA structures, such as electron microscopy and the
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two-dimensional (2D) gel electrophoresis; and (c) methods based on

functionality, such as ARS assays in yeast and in mammalian cells.

Although these techniques have been instrumental in identifying

replication origins in a variety of multicellular organisms, they are

not suitable for genome-wide analyses of complex genomes, leading

to the identification of only a small portion of replication origins

[Todorovic et al., 1999].

A recent cloning strategy for sequences comprising mammalian

replication origins exploited an origin-trapping assay, whereby

replication bubbles are selectively retained (trapped) in agarose due

to their circular nature [Mesner et al., 2006]. The assay described was

based on the ‘‘agar fixation’’ principle according to which, when a

mixture of linear and circular DNA is subjected to electrophoresis

the linear fragments migrate through the gel whereas the DNA

circles are topologically linked to the agarose mesh [Wada and

Kishizaki, 1968, #9331]. Using this procedure, Mesner et al. were

able to yield highly purified preparations of replication bubbles and

generated a replication origin library from S phase Chinese hamster

ovarian cells. The development of this new systematic screening tool

for large-scale identification of origin sequences opens the door for

the better understanding of the characteristics and regulation of

metazoan origins of DNA replication.

FEATURES OF REPLICATION ORIGINS

LOCAL CHROMATIN STRUCTURE

The chromatin environment influences both replication timing and

frequency of origin activation [Aladjem, 2007]. Chromatin exists in

either decondensed (euchromatin) or condensed (heterochromatin)

state. Euchromatin corresponds to genomic regions that are

decondensed during interphase and contain either actively

transcribing genes or potentially active ones [Dillon and Festenstein,

2002; Kosak and Groudine, 2002]. The regulatory sequences in these

regions are accessible to nucleases, commonly have unmethylated

CpG islands, and the core histones H3 and H4 are hyper-acetylated

on their N-terminal lysine residues [Zhang et al., 2005; Benson

et al., 2006]. Regulation of chromatin structure occurs through

post-translational modifications of the histone amino-terminal tails,

including acetylation, methylation, phosphorylation, ubiquitylation

and sumoylation [Kouzarides, 2007]. Alternatively, ATP-dependent

chromatin remodeling factors alter histone–DNA interactions, so

that proteins can interact with nucleosomal DNA. These modifica-

tions enable a dynamic chromatin state, in which diverse nuclear

processes can occur systematically [Jenuwein and Allis, 2001;

Cosgrove, 2007; Ruthenburg et al., 2007].

Replication initiates at earlier times in S-phase at euchromatic as

opposed to heterochromatic regions [Woodfine et al., 2004; Jeon

et al., 2005], with certain exceptions [Kim et al., 2003; Prioleau et al.,

2003]. In mammalian cells, treatment with the histone deacetylase

inhibitors (HDACi) sodium butyrate and Trichostatin A (TSA),

but not with the DNA methylation inhibitor azacytidine, changed

the replication timing imprint of intra- and inter-chromosomal loci,

indicating the importance of chromatin structure in determining

the replication program [Bickmore and Carothers, 1995]. Similarly,

treatment of HeLa cells with TSA changed the selection of

replication initiation sites from a more localized into a more
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dispersive pattern and led to earlier firing of specific origins [Kemp

et al., 2005]. Altogether, these studies suggest a role for epigenetic

regulation of both origin selection and temporal activation.

These dynamic properties of chromatin structure arise from the

action of multiple nuclear proteins that modulate its configuration

and function. For example, deletion of the budding yeast histone

deacetylase Rpd3 increased histone acetylation levels at many

replication origins causing them to fire earlier in S phase [Aparicio

et al., 2004]. Similarly, targeting the histone acetylase Gcn5 to a late

origin, induced an ‘‘open chromatin’’ status and accelerated its

activation timing [Vogelauer et al., 2002]. In Drosophila melano-

gaster amplification-stage follicle cells, chromatin at the origin

associated with the chorion locus is hyperacetylated during gene

amplification, while inactivation of the dRpd3 histone deacetylase

led to genome-wide hyperacetylation, genomic replication and

redistribution of the origin recognition complex (ORC). Similarly,

tethering dRpd3 or the Chameau acetyltransferase to the chorion

locus affected its replication activity suggesting the importance of

epigenetic factors on origin activity in metazoa [Aggarwal and

Calvi, 2004].

In addition to histone modifications, nucleosome repositioning

is involved in general chromatin remodeling events. One of the

ATP-dependent chromatin remodeling complexes, ACF1-SNF2h, is

localized to peri-centromeric heterochromatin during its replication

in late S phase [Collins et al., 2002]. Cells depleted of ACF1

demonstrate delayed progression of replication in late S phase,

indicating that ACF1-SNF2h is required for DNA replication at

heterochromatic regions. The replication defect of ACF1-depleted

cells was rescued by 5-aza-2-deoxycytidine treatments, which

caused decondensation of heterochromatin through inhibition of

DNA methylation. Thus, it appears that the ACF1-SNF2h complex

is required for the remodeling of heterochromatin prior to its

replication. Although it is not clear whether SNF2h plays a role in

chromatin remodeling at replication origins or forks, it is known to

be recruited to remodel chromatin at the Epstein-Barr virus (EBV)

origin, where host cell initiation machinery is utilized [Zhou et al.,

2005]. Similarly, another ATP-dependent chromatin remodeling

complex, NoRC, associates exclusively with late- but not early-

replicating ribosomal RNA genes (rDNA). NoRC overexpression

resulted in epigenetic silencing of the chromosomal locus as well as

resetting of the replication time of early-replicating rDNA arrays

from early to late [Li et al., 2005].

CRUCIFORM STRUCTURES

Cruciforms are naturally occurring DNA secondary structures

which arise through intra-strand base pairing of palindromic DNA

sequences. Such structures are widely distributed in the DNA of both

prokaryotes and eukaryotes [Wilson and Thomas, 1974; Schmid

et al., 1975; Panayotatos and Fontaine, 1987] and may affect the

supercoiling degree of DNA, nucleosome positioning, formation of

other DNA secondary structures or directly interact with proteins

[reviewed in Pearson et al., 1996]. Numerous studies have shown

that cruciforms serve as recognition signals at or near origins of

DNA replication [Pearson et al., 1996; Zannis-Hadjopoulos et al.,

2004]. Using monoclonal antibodies (mAbs) raised against cruci-

form DNA structures it was shown that there is a dynamic formation
METAZOAN ORIGINS OF DNA REPLICATION 513



Fig. 1. Model showing the binding of the various initiator proteins at a

metazoan origin of DNA Replication. AUX: auxiliary element, DUE: DNA

unwinding element, ORE: origin recognition element, 20mer: 20-bp consensus

sequence element, MAR: matrix attachment region, A/T: A–T-rich sequence,

OTF: ORC targeting factor. The question mark indicates initiator proteins, not

identified yet, which may bind to the ORE/20mer. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
of cruciforms in mammalian nuclei, reaching a maximum at the G1/

S boundary [Ward et al., 1990; Ward et al., 1991]. Furthermore, use

of these mAbs led to the purification of active mammalian origins of

replication [Bell et al., 1991], whereas their addition to permeabi-

lized cells resulted in a two- to sixfold enhancement of DNA

synthesis [Zannis-Hadjopoulos et al., 1988]. Altogether, these results

support the notion that cruciform structures play a critical role in the

initiation of DNA replication by a mechanism that is thought to

involve cruciform stabilization and recognition by replication

initiator proteins. In support of this, a cruciform-binding activity

was purified which was identified as a member of the 14-3-3 protein

family and participates in the initiation of DNA replication [Pearson

et al., 1994b; Todd et al., 1998; Yahyaoui et al., 2007; reviewed in

Zannis-Hadjopoulos et al., 2008].

By analogy to DNA replication, cruciforms are also found in

transcription regulatory elements in the genomic DNA of both

prokaryotic and eukaryotic species where they have been involved

in the regulation of gene expression [Kim et al., 1998; Lienard

et al., 2006]. Therefore, it has been proposed that under certain

physiological conditions inverted repeat sequences can extrude

from the linear to the cruciform conformation and serve as

recognition signals for specific DNA replication and transcription

factors [Zannis-Hadjopoulos et al., 1984; Sinden, 1994; Pearson

et al., 1996; Wadkins, 2000].

CONSENSUS SEQUENCES IN DNA REPLICATION ORIGINS

Previous attempts to determine a consensus sequence for replication

origins through computer-based analyses of chromosomal DNA

sequences harboring initiation sites resulted in the identification of a

21 bp sequence, but it was not determined whether that sequence

conferred autonomous DNA replication origin activity [Dobbs et al.,

1994]. A recent study, reported a site-specific interaction of the

murine pre-RC with a short repeated DNA element within the

replication origin of the rDNA locus, suggesting that short DNA

sequences are crucial for origin recognition [Zellner et al., 2007].

Supporting this notion, a short (36 bp) putative mammalian

consensus sequence that designates replication initiation sites

(origins) had been identified earlier, using four mammalian

autonomously replicating sequences containing a-satellite DNA

and a reiterative process between pairs of African green monkey and

human sequences to minimize derivation of a a-satellite consensus

[Price et al., 2003]. This consensus sequence was capable of

supporting autonomous replication of a plasmid after transfection

into eukaryotic cells. Initiation of DNA replication occurs within

the consensus and homologues of it are found consistently at

mammalian chromosomal sites of initiation and within CpG islands,

which coincide with replication initiation sites [Delgado et al., 1998;

Price et al., 2003]. Versions of the consensus sequence are found

at known sites of initiation of DNA replication, including the

g-aminobutyric acid receptor subunit b3 and a5 gene cluster

[Sinnett et al., 1996; Strehl et al., 1997] and at the dnmt1 (human

DNA methyltransferase) locus [Araujo et al., 1999], and function as

origins of DNA replication in normal and malignant human cells,

immortalized monkey and mouse cells, and normal cow, chicken

and fruit fly cells. Mutation analysis of the 36 bp consensus

sequence indicated that an internal 20-bp human consensus
514 METAZOAN ORIGINS OF DNA REPLICATION
sequence (20mer) is sufficient to act as a core origin element.

The distribution of this 20mer consensus over 1 Mb of human

chromosomal DNA is similar, quantitatively and qualitatively to the

distribution of the ARS consensus sequence (ACS) on S. cerevisiae

chromosomes [Price et al., 2003]. Finally, six versions of the 20mer

which were analyzed ectopically and endogenously were found to

act as origins of DNA replication in plasmids as well as in situ,

at their chromosomal loci, suggesting that the 20-bp consensus

sequence can be used to predict chromosomal regions that contain

replication origins [Di Paola et al., 2006].
ORIGIN BINDING PROTEINS

Origin recognition proteins bind specifically to a site within the

replication origin and participate in the initiation of DNA replication

either directly by unwinding the DNA (helicase activity), or

indirectly through their interaction with other replication proteins

[DePamphilis et al., 2006; Sclafani and Holzen, 2007].

PRE-REPLICATION COMPLEX (PRE-RC)

Replication origins are marked by: (a) the presence of a mammalian

consensus sequence (Consensus Sequences in DNA Replication

Origins Section) within a favorable chromatin context, and (b) the

binding of ORC, which acts as a cell-cycle-regulated landing dock

for the downstream initiator proteins Cdc6 and Cdt1 (Fig. 1). Binding

of the latter two proteins during G1-phase permits the subsequent

loading of the putative DNA helicase, the minichromosome main-

tenance protein complex (MCM2-7) [Cook et al., 2004], forming the

pre-replication complex (pre-RC), and thus licensing the replication

origins [Sclafani and Holzen, 2007; and references therein].

The MCM2-7 complex has very low helicase activity in vitro by

itself [Ishimi, 1997; Lee and Hurwitz, 2000], but it is active when

complexed with cdc45 and GINS [Moyer et al., 2006]. At the G1/S

transition, the activity of two kinases, the Dbf4-dependent kinase
JOURNAL OF CELLULAR BIOCHEMISTRY



(DDK) (Cdc7-Dbf4) and the cell-cycle dependent kinase 2 (Cdk2-

Cyclins E/A), results in the formation of a pre-initiation complex,

containing the cdc45 and GINS proteins, as well as, the activation of

the putative DNA helicase and the recruitment of the replicative

DNA polymerases [Mimura and Takisawa, 1998; Tanaka and

Nasmyth, 1998; Sheu and Stillman, 2006; Yabuuchi et al., 2006;

Krasinska et al., 2008]. Upon entry into S phase, multiple

mechanisms ensure that the replication initiation machinery is

inactivated so as to avoid re-replication of chromosomal regions

and genome instability [Blow and Dutta, 2005; Hook et al., 2007]. In

yeasts, a number of S-phase CDK-dependent events prevent re-

licensing of replicated DNA, which include: (i) Cdc6 phosphoryla-

tion at the G1/S transition which targets it for degradation [Elsasser

et al., 1999; Drury et al., 2000]; (ii) decrease of the Schizosacchar-

omyces pombe Cdt1 (SpCdt1) levels during S-phase, possibly by a

CDK-mediated degradation mechanism [Nishitani et al., 2000]; and

(iii) inactivation of the ORC complex by CDK phosphorylation [Vas

et al., 2001]. An alternate mechanism of pre-RC inactivation after

origin firing was also described in S. cerevisiae, involving the direct

interaction of CDKs with ORC6 and Cdc6, which inhibits pre-RC

assembly in S phase [Mimura et al., 2004; Wilmes et al., 2004]. In

metazoans, ORC1, the subunit of ORC that has ATPase activity, is

targeted for degradation in S-phase by a SCF (Skp2)-dependent

ubiquitination reaction [Mendez et al., 2002], while human Cdc6 is

exported from the nucleus due to the CDK enzymatic activity, which

may play a role in preventing re-replication [Saha et al., 1998;

Petersen et al., 1999]. The dominant pathway that is functioning in

preventing metazoan origin re-licensing, however, involves the

blockage of Cdt1 activity. Geminin, a specific inhibitor of Cdt1, has

emerged as a key regulator of metazoan replication (conserved from

C. elegans to humans) and Cdt1 activity. Geminin is destabilized

during G1 phase and accumulates during S, G2 and M phases of the

cell cycle, binding directly to Cdt1 and preventing the loading of the

MCM2-7 complex to it [Yanagi et al., 2002; Cook et al., 2004].

Furthemore, phosphorylation of Cdt1 by CDK at the G1/S transition

triggers its degradation by the proteasome, through Skp2-dependent

and -independent pathways [Liu et al., 2004; Nishitani et al., 2004;

Thomer et al., 2004; Arias and Walter, 2005]. Recently, a new

evolutionary conserved back-up mechanism was described in the

case of re-replication-induced DNA damage; geminin depletion as

well as overexpression of Cdt1 or Cdc6 causes re-replication, which

might ultimately lead to tumorigenesis. However, re-replication

induced by such manipulations is incomplete suggesting the

existence of backup events, which restrain re-replication once it

begins. Studies in both Drosophila and human cells suggest that

Cdt1 and Cdc6 ubiquitination and degradation are coupled with

geminin overexpression, providing a salvage pathway and mini-

mizing the extent of re-replication and genomic instability

[Mihaylov et al., 2002; Ballabeni et al., 2004; Hall et al., 2008].

ORC TARGETING FACTORS

Origin determination relies on the recruitment of the initiator

protein ORC, as expression of a GAL4-ORC fusion protein leads to

the creation of a functional artificial origin at the GAL4 DNA-

binding site [Takeda et al., 2005]. Although the metazoan ORC

exhibits virtually no sequence-specificity [Vashee et al., 2003;
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Remus et al., 2004], unlike the S. cerevisiae ORC (ScORC), the

replication initiation events are nonetheless not random, as

determined by studies on the lamin B2, c-myc and b-globin origins

[Ghosh et al., 2004; Paixao et al., 2004; Wang et al., 2004]. It has

been proposed that targeting of metazoan ORC to specific replication

origins, relies on the presence of permissive local chromatin

structure [Danis et al., 2004 and Pre-Replication Complex (Pre-RC)

Section], DNA topology [Falaschi et al., 2007] and/or accessory

targeting factors that exhibit sequence-specificity [Bell and Dutta,

2002; Gerbi et al., 2002; Kearsey and Cotterill, 2003]. Remus et al.

[2004] showed that DmORC exhibits mild sequence specificity,

but strong preference for negatively supercoiled DNA, suggesting

that the topological state of DNA is a critical factor for origin

specification in D. melanogaster. Recently, topoisomerases I and II

were also found to interact specifically with the human lamin B2

replication origin in a cell-cycle-dependent manner, indicating that

the role of DNA topology during pre-RC assembly may be applicable

in mammalian genomes as well [Abdurashidova et al., 2007;

Falaschi et al., 2007].

Another proposed mechanism for metazoan origin specification

involves the function of accessory proteins that target ORC to

replication origins. The Epstein-Barr virus (EBV) replicates its

genome from the latent origin of replication, oriP, using the ORC of

the host. Initiation of DNA replication from oriP is affected by the

viral transactivator protein EBNA-1 [Schepers et al., 2001], the

telomere repeat factor 2 (TRF2) [Atanasiu et al., 2006] and the high

mobility group protein A1a (HMGA1a) [Thomae et al., 2008], which

have been proposed to recruit human ORC (HsORC) to the replicator

by binding to specific DNA sequences (EBNA-1, TRF2) or the minor

groove of AT-tracks (HMGA1a) at chromosomal origins. In mice,

the transcriptional repressor protein A1F-C was shown to be able to

recruit Orc1 to the rat aldolase B origin, thus effecting replicator

activity from this origin [Minami et al., 2006]. Finally, a role for ORC

(HsORC) positioning was also described in humans; human cells

hypomorphic for the Ku DNA repair protein displayed decreased

origin usage and prolonged G1 phase due to defective ORC assembly

[Sibani et al., 2005a,b], while Ku depletion led to the activation of a

replication stress checkpoint [Rampakakis et al., 2008]. A direct,

transcription-independent role for c-Myc in replication initiation

involving replication origin binding and pre-RC interaction was also

recently proposed [Dominguez-Sola et al., 2007].

The above data suggest a model in which ORC can be recruited

to multiple sites in the metazoan genome through association

with a number of different sequence-specific accessory factors in the

presence of permissive local chromatin structure and DNA topology.

Such a model would explain the initiation of DNA replication from

chromosomal sites with variable DNA sequence as well as the

degenerate nature of the metazoan replication origin consensus

sequence.

CRUCIFORM BINDING PROTEINS (CBP/14-3-3)

The cruciform binding protein (CBP) was initially purified via its

ability to specifically interact with cruciform DNA regardless of its

sequence [Pearson et al., 1994a]. The interaction of CPB with DNA

was localized to the four-way junction at the base of the cruciforms,

binding onto the elbows of the junctions in an asymmetric fashion
METAZOAN ORIGINS OF DNA REPLICATION 515



[Pearson et al., 1995]. By microsequencing, CBP was subsequently

identified as a member of the 14-3-3 protein family [Todd et al.,

1998].

The 14-3-3-protein family is a highly conserved family of

28-33kDa acidic proteins, which are expressed in a range of tissues

and are found in all eukaryotic species [Aitken et al., 1992; Wang

and Shakes, 1996; Ferl et al., 2002]. The human genome contains at

least seven distinct 14-3-3 genes, giving rise to nine isoforms (a, b,

g, d, e, z, h, s, and t, with a and d being phosphorylated forms of b

and z, respectively), together with other non-functional pseudo-

genes [Aitken et al., 1992; Fu et al., 2000]. 14-3-3 isoforms are

linked to control of a wide spectrum of biological processes,

including cell cycle progression, signal transduction, apoptosis

[reviewed in Tzivion et al., 2001; Dougherty and Morrison,

2004; Mackintosh, 2004], DNA replication [reviewed in Zannis-

Hadjopoulos et al., 2008], and nucleo-cytoplasmic shuttling of

proteins such as class II histone deacetylases [McKinsey et al., 2001].

The isoforms are largely identical, but contain a few regions of

diversity. Most of the isoforms are expressed in all tissues, although

14-3-3s expression is restricted to epithelial cells and t to T cells

[Aitken et al., 2002].

The CBP complex contains the 14-3-3 isoforms b, g, e, z, and s

[Alvarez et al., 2002] which form specific heterodimers as shown by

the ability of 14-3-3 z to dimerize only with b, e, and z but not with g

ands [Alvarez et al., 2003]. This limitation in heterodimer formation

is believed to confer specificity on 14-3-3 function [Aitken et al.,

2002]. The crystal structure of the 14-3-3 dimers revealed a

U-shaped molecule, the center of which binds onto the cruciform

[Liu et al., 1995]. CBP/14-3-3 binds in vivo to replication origins in

mammalian and S. cerevisiae cells in a cell cycle-dependent manner,

peaking at late G1 and decreasing thereafter [Callejo et al., 2002;

Novac et al., 2002; Yahyaoui et al., 2007]. With regards to its

mechanism of action, CBP/14-3-3 is believed to act as sensor of

transient cruciform extrusion during G1 phase (ORC Targeting

Factors Section) serving as attachment site for initiator proteins

[reviewed in Zannis-Hadjopoulos et al., 2004; Zannis-Hadjopoulos

et al., 2008]. In support of this model, a number of proteomic studies

have shown the association of 14-3-3 with initiator proteins and

members of the pre-RC complex, among which, the MCM helicase,

Ku, Replication Factor C and DNMT1 [Meek et al., 2004; Pozuelo

Rubio et al., 2004; Satoh et al., 2006]. A model showing the

interaction of the various initiator proteins with replication origins

is shown in Figure 1.

DNA REPLICATION AND CANCER

ORIGIN ACTIVITIES IN NORMAL VERSUS TRANSFORMED/

TUMOR CELLS

The activities of DNA replication origins over a 12.5 kb region of the

human c-myc locus were shown to be twofold higher in HeLa cells as

in NSF cells, suggesting that cell transformation may induce greater

frequency of initiation of origins at certain loci [Tao et al., 1997,

2000]. A twofold increase in origin activity across the same 12.5 kb

region of the human c-myc locus was also found in the isogenic cell

lines WI38 and their transformed counterpart WI38 (SV40) [Tao

et al., 2001], ruling out the possibility that cell type effects were the
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cause of the differential origin usage found in HeLa and NSF cells. It

was thus concluded that the increased origin activities were the

result of cellular transformation.

More recent studies have found two- to threefold higher origin

activities in transformed/tumor cells compared to normal cells,

suggesting higher activation of these origins located across this

�211 kb region on human chromosome 19q13 [Di Paola et al.,

2006]. Again, use of the isogenic cell lines of WI38 and WI38(SV40)

showed that the origins are at least twice as active in the transformed

cell line (WI38(SV40)) compared to that of its normal counterpart

(WI38), ruling out the possibility that cell type effects were

responsible for increased frequency of initiation. The increased

origin activity across the �211 kb region in tumor/transformed cells

compared to normal cells may be influenced by one or many

parameters regulating DNA replication, such as the concentration

and conformation of initiator proteins [McNairn and Gilbert, 2005;

Lau et al., 2007; Blow and Gillespie, 2008], specific DNA sequences

within the initiation sites having differential affinities for ORC [Bell,

2002], gene transcription [DePamphilis, 1993], chromatin structure

[Melendy and Li, 2001; Aladjem, 2007], nuclear organization

[Taddei et al., 2004; Ottaviani et al., 2008], and nucleotide pool

levels [Anglana et al., 2003]. Previous work suggests that there are at

least two types of malignant changes in regulation of DNA

replication, the unexpected increase in origin activity at some loci

[Tao et al., 1997, 2000, 2001; Di Paola et al., 2006] and activation of

silent origins [Martin and Oppenheim, 1977; Oppenheim and Martin,

1978]. Thus, it appears that there are at least three subsets of origins;

those that are normal and remain unchanged, those with increased

activity in immortalized or malignant cells, and those that are

activated solely in tumor cells.

POTENTIAL ROLE OF REPLICATION IN TUMORIGENESIS

How replication origins participate in oncogenesis is of considerable

interest due to their widespread roles in tumorigenesis and/or tumor

suppression. Recent findings from the INK4/ARF locus [encoding for

the tumor suppressors p15(INK4b), ARF and p16(INK4a)], one of the

most frequently inactivated loci in human cancer [reviewed in Sherr,

2000], shed light on this process. A putative DNA replication origin

was identified at the INK4/ARF locus that coincides with a conserved

noncoding DNA element (regulatory domain RD(INK4/ARF) and

assembles a multiprotein complex containing Cdc6, Orc2 and MCMs

[Gonzalez et al., 2006]. Cdc6 overexpression resulted in targeted

and localized heterochromatinization of RD(INK4/ARF), as well as,

transcriptional repression of the locus, demonstrating that RD(INK4/

ARF) is a relevant transcriptional regulatory element. The authors

concluded that this mechanism was consistent with the silencing of

the mating-type HM loci in yeast by replication factors. In addition

to the ability of Cdc6 to repress the INK4/ARF locus, the c-Myc

proto-oncogene has gained considerable attention as controlling

DNA replication [Cole and Cowling, 2008]. Dominguez-Sola et al.

reported that c-Myc promotes DNA replication via a nontranscrip-

tional mechanism, and that c-Myc deregulation causes DNA damage

predominately during S phase. These results establish c-Myc as a

new DNA replication factor and suggest an alternative model for its

role in cell growth and tumorigenesis [Dominguez-Sola et al., 2007].
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PERSPECTIVES

The ability to assess the dynamics of DNA replication at a genome-

wide level has provided new insights into the global regulation of

DNA replication. Different approaches, such as replication timing

and genome-wide localization analyses, have been used to identify

replication origins and characterize their temporal pattern of

activation in a variety of eukaryotic cell types. Such studies have

revealed that origin specification is more complex than was

previously thought, with multiple parameters being important, such

as specific cis-acting sequences recognized by one or more trans-

acting factors, DNA secondary structure, chromatin structure and

epigenetic regulation. In the long term, the studies of replication

origin identification will have to be combined with genetic and

biochemical analyses in order to fully characterize the key

determinants of origin function and gain a better understanding

of the mechanisms regulating the initiation of DNA replication.

However, the availability of large numbers of DNA sites that act as

origins of replication will be essential for these studies to determine

the mechanisms that direct pre-RC formation and origin activation

in metazoa. Although all eukaryotic organisms maintain a clear

pattern of replication timing across their genome, the mechanisms

responsible for establishing this conserved and characteristic pattern

remain obscure. Understanding of the intricate mechanisms

regulating DNA replication will depend on uncovering the interplay

between all the known parameters involved as well as identifying

new ones. With regard to the changes in DNA replication that result

from the stepwise progression toward tumorigenesis, the ultimate

goal will be to develop a sensitive detection method for cells at an

early step of malignant transformation. It will also be vital to

discover factors that are required for the activation of tumor-specific

origins of DNA replication in order to develop a gene vector therapy

system, specific for predisposed (immortal, but not yet tumorigenic)

and malignant cells, that will allow their specific targeting.
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